189 8069 5689

python中调试的示例分析-创新互联

小编给大家分享一下python中调试的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联建站主营竹山网站建设的网络公司,主营网站建设方案,手机APP定制开发,竹山h5重庆小程序开发搭建,竹山网站营销推广欢迎竹山等地区企业咨询

零、准备调试代码

在讲解三个调试工具前,我们先编写待调试的代码。代码很简单,就是计算两个数的商。我们在编写代码的时候故意留下了除数为 0 的 bug。

def division(start, end):
  for i in range(start, end, -1):
    num1 = i
    num2 = i - 1
    result = num1 / num2
    print(result)


if __name__ == '__main__':
  division(10, 0)

一、PySnooper

PySnooper 是 Python 的第三方工具库,它可以精确的显示代码的执行时间、执行顺序和代码中的局部变量值的变化等。 PySnooper 使用方法很简单,只需要将它作为装饰器来使用即可。下面我们来看一下具体使用步骤:

安装 PySnooper

1. 在控制台输入如下命令:

pip install pysnooper

等待两秒钟后 PySnooper 安装完成。

2. 加入 PySnooper

首先需要引入 PySnooper

import pysnooper

接着在需要测试的函数上加上 pysnooper 装饰器

@pysnooper.snoop()
def division(start, end):
  for i in range(start, end, -1):
    num1 = i
    num2 = i - 1
    result = num1 / num2
    print(result)


if __name__ == '__main__':
  division(10, 0)

调试代码
在控制台输入命令:

python text.py

运行代码后,控制台输出如下内容

python中调试的示例分析

python中调试的示例分析

上图只截取了 PySnooper 输出日志的开头内容和最后结尾的内容。从截图中我们可以看到 PySnooper 输出了每行代码的运行顺序、运行时间和代码运行中变量值的变化,以及报错信息。在实际项目中 PySnooper 输出的日志内容会很多,在控制台查看会很不方便,这时我们可以将日志输出到本地文件中,我们只需在 PySnooper 装饰器中加入日志保存路径即可:

@pysnooper.snoop('/app/project_log.log')

一些公司对日志输出会有要求,比如每行日志要以某某字符串开头,这时只需在装饰器中加入需要字符穿即可:

@pysnooper.snoop(prefix='MyCompanyName: ')

上述所讲的都是 PySnooper 装饰器的常用参数,例如监控自定义表达式、监控底层函数、多线程等 PySnooper 同样支持,具体参数可以在官方项目文档中查看。
前面我们所讲的都是在函数上利用装饰器来监控整个函数,但是在实际项目中往往一个函数内容会很多,如果监控整个函数会导致输出的日志过多,这时我们就可以利用 PySnooper 的局部监控功能来监控函数中需要监控的代码片段。现在我们来修改一下代码,只监控输出的值:

import pysnooper

def division(start, end):
  for i in range(start, end, -1):
    with pysnooper.snoop():
      num1 = i
      num2 = i - 1
      result = num1 / num2
    print(result)


if __name__ == '__main__':
  division(10, 0)

上述代码运行后我们就会发现输出的内容少了很多。

二、Better-exceptions

Better-exceptions 同样是 Python 的第三方工具库,它出现的原因是其实很简单就是“美化异常信息”(是不是感觉作者很任性)。 Better-exceptions 主要使用了 Python 的 sys 模块的 excepthook 方法,这个方法在当系统抛出异常时,解释器就会调用它,同时传递三个参数:异常类、异常实例和 traceback 对象,这就说明我们可以重写这个方法来捕获系统异常。但是,因为我们可以重写 excepthook 方法来捕获系统异常,因此 Better-exceptions 对与 Web 框架来说是不起任何作用的,因为 Web 框架都已经处理了系统抛出的异常,不会再以 hook 的方式触发 Better-exceptions 。下面我们就来看一下该怎么用。

安装 Better-exceptions

首先在控制台输入如下命令:

pip install better-exceptions

等待两秒钟后 Better-exceptions 安装完成。

接着我们在控制台输入如下代码,来设置环境变量:

setx BETTER_EXCEPTIONS 1

调试代码
在控制台输入命令:

python text.py

代码运行后,控制台输出如下图:

python中调试的示例分析

从上面的图我们可以看到,Better-exceptions 对异常代码进行了着色,并对产生异常的变量值进行了输出。通过这两项内容我们就可以很快捷的看到具体报错位置和报错原因。

这里有需要注意的地方就是,在 Windows 系统下输出的日志会存在乱码问题,这是因为 Better-exceptions 的编码格式造成的。要解决这个问题我们只需要修改 better-exceptions 目录下的 encoding.py 文件,讲文件中的 ENCODING = locale.getpreferredencoding()修改为 ENCODING = 'utf-8'即可。

三、PDB

PDB 是 Python 内置的模块,我们可以利用 PDB 设置断点和跟踪调试。 PDB 的使用不需要再安装第三方插件,只需要在命令行输入如下命令:

python -m pdb Test.py

命令执行后将会进入 PDB 调试模式。如果需要在代码中加入断点,只需要在需要加入断点的位置加入 pdb.set_trace()即可。当进入到 PDB 模式后,输入 c 就可以从当前断点直接跳转到下一个断点,如果后续没有断点,则会将剩余代码执行完。当然,如果需要单步执行代码,在控制台输入 s 指令,但是有时主函数会调用大量的其他函数,这时在命令行输入 n 就可以只在主函数中执行单步调试。除了上述指令外,PDB 还有其他指令,如下表:

指令说明
l显示所有代码
n执行下一条代码
c执行当前断点后面的代码,知道代码执行完毕
b x在代码的第X行设置断点
clear清除全部断点
s单步执行
s function_name进入 function_name 函数内部执行
q退出PDB
a打印所有参数值
p打印指定变量值
r忽略剩余断点,将剩余代码执行完毕

以上是“python中调试的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页名称:python中调试的示例分析-创新互联
文章位置:http://jkwzsj.com/article/phjie.html

其他资讯