189 8069 5689

PyTorch怎么展示调用顺序

这篇文章主要介绍“PyTorch怎么展示调用顺序”,在日常操作中,相信很多人在PyTorch怎么展示调用顺序问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PyTorch怎么展示调用顺序”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

创新互联是一家专业提供南和企业网站建设,专注与网站建设、网站制作、H5技术、小程序制作等业务。10年已为南和众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。

总结说明:代码实验表面,反向传播计算梯度时的执行顺序是和前向计算相反的.这一点由钩子函数的执行顺序可以观察到,并且由保存梯度的列表中的内容顺序可以推断出来.

代码实验展示:

import torchprint(torch.__version__)  # 1.2.0+cu92torch.manual_seed(seed=20200910)gradients = list()# ------------------------------------------ #def grad_hook_x0(grad):print("\n为x0执行自定义的钩子函数...")print("保存x0的梯度...")gradients.append(grad)print("x0的钩子函数执行结束...\n")# return gradx0 = torch.randn(2,3,4,5,6,7,requires_grad=True)print('x0.shape:', x0.shape)  # x0.shape: torch.Size([2, 3, 4, 5, 6, 7])# print('x0:\n',x0)x0.register_hook(grad_hook_x0)# ------------------------------------------ #def grad_hook_x1(grad):print("\n为x1执行自定义的钩子函数...")print("保存x1的梯度...")gradients.append(grad)print("x1的钩子函数执行结束...\n")# return gradx1 = torch.sum((4 * x0 + 18.0), dim=(0,1))  x1.retain_grad()print('x1.shape:', x1.shape)  # x1.shape: torch.Size([4, 5, 6, 7])# print('x1:\n',x1)x1.register_hook(grad_hook_x1)# ------------------------------------------ #def grad_hook_x2(grad):print("\n为x2执行自定义的钩子函数...")print("保存x2的梯度...")gradients.append(grad)print("x2的钩子函数执行结束...\n")# return gradx2 = torch.sum(x1, dim=(1,2)) * 10.0x2.retain_grad()print('x2.shape:', x2.shape)  # x2.shape: torch.Size([4, 7])# print('x2:\n',x2)x2.register_hook(grad_hook_x2)# ------------------------------------------ #def grad_hook_loss(grad):print("\n为loss执行自定义的钩子函数...")print("保存loss的梯度...")gradients.append(grad)print("loss的钩子函数执行结束...\n")# return gradloss = torch.mean(x2)loss.retain_grad()print('loss.shape:', loss.shape)  # loss.shape: torch.Size([])print('loss:',loss)  # loss: tensor(32403.7344, grad_fn=)loss.register_hook(grad_hook_loss)# ------------------------------------------ #loss.backward()  # 这行代码将会执行已注册登记的钩子函数tensors_list = [loss, x2, x1, x0]print('打印相关信息,gradients列表的长度为:', len(gradients))print('打印相关信息,tensors_list列表的长度为:', len(tensors_list))for g, t in zip(gradients, tensors_list):print( torch.equal(g, t.grad), g.shape==t.grad.shape==t.shape, g.shape, t.grad.shape, t.shape)

控制台输出结果:

尝试新的跨平台 PowerShell 

加载个人及系统配置文件用了 869 毫秒。
(base) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq> conda activate ssd4pytorch2_2_0
(ssd4pytorch2_2_0) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq>  & 'D:\Anaconda3\envs\ssd4pytorch2_2_0\python.exe' 'c:\Users\chenxuqi\.vscode\extensions\ms-python.python-2021.1.502429796\pythonFiles\lib\python\debugpy\launcher' '58682' '--' 'c:\Users\chenxuqi\Desktop\News4cxq\test4cxq\testHook.py'
1.2.0+cu92
x0.shape: torch.Size([2, 3, 4, 5, 6, 7])
x1.shape: torch.Size([4, 5, 6, 7])
x2.shape: torch.Size([4, 7])
loss.shape: torch.Size([])
loss: tensor(32403.7344, grad_fn=)

为loss执行自定义的钩子函数...
保存loss的梯度...
loss的钩子函数执行结束...


为x2执行自定义的钩子函数...
保存x2的梯度...
x2的钩子函数执行结束...


为x1执行自定义的钩子函数...
保存x1的梯度...
x1的钩子函数执行结束...


为x0执行自定义的钩子函数...
保存x0的梯度...
x0的钩子函数执行结束...

打印相关信息,gradients列表的长度为: 4
打印相关信息,tensors_list列表的长度为: 4
True True torch.Size([]) torch.Size([]) torch.Size([])
True True torch.Size([4, 7]) torch.Size([4, 7]) torch.Size([4, 7])
True True torch.Size([4, 5, 6, 7]) torch.Size([4, 5, 6, 7]) torch.Size([4, 5, 6, 7])
True True torch.Size([2, 3, 4, 5, 6, 7]) torch.Size([2, 3, 4, 5, 6, 7]) torch.Size([2, 3, 4, 5, 6, 7])
(ssd4pytorch2_2_0) PS C:\Users\chenxuqi\Desktop\News4cxq\test4cxq>

到此,关于“PyTorch怎么展示调用顺序”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


本文名称:PyTorch怎么展示调用顺序
分享路径:http://jkwzsj.com/article/gcepgi.html

其他资讯