189 8069 5689

nosql技术选型,nosql的技术特点

2019数据架构选型必读:1月数据库产品技术解析

本期目录

创新互联建站10多年企业网站制作服务;为您提供网站建设,网站制作,网页设计及高端网站定制服务,企业网站制作及推广,对混凝土搅拌站等多个行业拥有多年的网站维护经验的网站建设公司。

DB-Engines数据库排行榜

新闻快讯

一、RDBMS家族

二、NoSQL家族

三、NewSQL家族

四、时间序列

五、大数据生态圈

六、国产数据库概览

七、云数据库

八、推出dbaplus Newsletter的想法

九、感谢名单

为方便阅读、重点呈现,本期Newsletter(2019年1月)将对各个板块的内容进行精简。需要阅读全文的同学可点击文末 【阅读原文】 或登录

进行下载。

DB-Engines数据库排行榜

以下取自2019年1月的数据,具体信息可以参考,数据仅供参考。

DB-Engines排名的数据依据5个不同的因素:

新闻快讯

1、2018年9月24日,微软公布了SQL Server2019预览版,SQL Server 2019将结合Spark创建统一数据平台。

2、2018年10月5日,ElasticSearch在美国纽约证券交易所上市。

3、亚马逊放弃甲骨文数据库软件,导致最大仓库之一在黄金时段宕机。受此消息影响,亚马逊盘前股价小幅跳水,跌超2%。

4、2018年10月31日,Percona发布了Percona Server 8.0 RC版本,发布对MongoDB 4.0的支持,发布对XtraBackup测试第二个版本。

5、2018年10月31日,Gartner陆续发布了2018年的数据库系列报告,包括《数据库魔力象限》、《数据库核心能力》以及《数据库推荐报告》。

今年的总上榜数据库产品达到了5家,分别来自:阿里云,华为,巨杉数据库,腾讯云,星环 科技 。其中阿里云和巨杉数据库已经连续两年入选。

6、2018年11月初,Neo4j宣布完成E轮8000万美元融资。11月15日,Neo4j宣布企业版彻底闭源:

7、2019年1月8日,阿里巴巴以1.033亿美元(9000万欧元)的价格收购了Apache Flink商业公司DataArtisans。

8、2019年1月11日早间消息,亚马逊宣布推出云数据库软件,亚马逊和MongoDB将会直接竞争。

RDBMS家族

Oracle 发布18.3版本

2018年7月,Oracle Database 18.3通用版开始提供下载。我们可以将Oracle Database 18c视为采用之前发布模式的Oracle Database 12c第2版的第一个补丁集。未来,客户将不再需要等待多年才能用上最新版Oracle数据库,而是每年都可以期待新数据库特性和增强。Database 19c将于2019年Q1率先在Oracle cloud上发布云版本。

Oracle Database 18c及19c部分关键功能:

1、性能

2、多租户,大量功能增强及改进,大幅节省成本和提高敏捷性

3、高可用

4、数据仓库和大数据

MySQL发布8.0.13版本

1、账户管理

经过配置,修改密码时,必须带上原密码。在之前的版本,用户登录之后,就可以修改自己的密码。这种方式存在一定安全风险。比如用户登录上数据库后,中途离开一段时间,那么非法用户可能会修改密码。由参数password_require_current控制。

2、配置

Innodb表必须有主键。在用户没有指定主键时,系统会生成一个默认的主键。但是在主从复制的场景下,默认的主键,会对丛库应用速度带来致命的影响。如果设置sql_require_primary_key,那么数据库会强制用户在创建表、修改表时,加上主键。

3、字段默认值

BLOB、TEXT、GEOMETRY和JSON字段可以指定默认值了。

4、优化器

1)Skip Scan

非前缀索引也可以用了。

之前的版本,任何没有带上f1字段的查询,都没法使用索引。在新的版本中,它可以忽略前面的字段,让这个查询使用到索引。其实现原理就是把(f1 = 1 AND f2 40) 和(f1 = 2 AND f2 40)的查询结果合并。

2)函数索引

之前版本只能基于某个列或者多个列加索引,但是不允许在上面做计算,如今这个限制消除了。

5、SQL语法

GROUP BY ASC和GROUP BY DESC语法已经被废弃,要想达到类似的效果,请使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。

6、功能变化

1)设置用户变量,请使用SET语句

如下类型语句将要被废弃SELECT @var, @var:=@var+1。

2)新增innodb_fsync_threshold

该变量是控制文件刷新到磁盘的速率,防止磁盘在短时间内饱和。

3)新增会话级临时表空间

在以往的版本中,当执行SQL时,产生的临时表都在全局表空间ibtmp1中,及时执行结束,临时表被释放,空间不会被回收。新版本中,会为session从临时表空间池中分配一个临时表空间,当连接断开时,临时表空间的磁盘空间被回收。

4)在线切换Group Replication的状态

5)新增了group_replication_member_expel_timeout

之前,如果某个节点被怀疑有问题,在5秒检测期结束之后,那么就直接被驱逐出这个集群。即使该节点恢复正常时,也不会再被加入集群。那么,瞬时的故障,会把某些节点驱逐出集群。

group_replication_member_expel_timeout让管理员能更好的依据自身的场景,做出最合适的配置(建议配置时间小于一个小时)。

MariaDB 10.3版本功能展示

1、MariaDB 10.3支持update多表ORDER BY and LIMIT

1)update连表更新,limit语句

update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;

MySQL 8.0直接报错

MariaDB 10.3更新成功

2)update连表更新,ORDER BY and LIMIT语句

update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;

MySQL 8.0直接报错

MariaDB 10.3更新成功

参考:

2、MariaDB10.3增补AliSQL补丁——安全执行Online DDL

Online DDL从名字上看很容易误导新手,以为不论什么情况,修改表结构都不会锁表,理想很丰满,现实很骨感,注意这个坑!

有以下两种情况执行DDL操作会锁表的,Waiting for table metadata lock(元数据表锁):

针对第二种情况,MariaDB10.3增补AliSQL补丁-DDL FAST FAIL,让其DDL操作快速失败。

例:

如果线上有某个慢SQL对该表进行操作,可以使用WAIT n(以秒为单位设置等待)或NOWAIT在语句中显式设置锁等待超时,在这种情况下,如果无法获取锁,语句将立即失败。 WAIT 0相当于NOWAIT。

参考:

3、MariaDB Window Functions窗口函数分组取TOP N记录

窗口函数在MariaDB10.2版本里实现,其简化了复杂SQL的撰写,提高了可读性。

参考:

Percona Server发布8.0 GA版本

2018年12月21日,Percona发布了Percona Server 8.0 GA版本。

在支持MySQL8.0社区的基础版上,Percona Server for MySQL 8.0版本中带来了许多新功能:

1、安全性和合规性

2、性能和可扩展性

3、可观察性和可用性

Percona Server for MySQL 8.0中将要被废用功能:

Percona Server for MySQL 8.0中删除的功能:

RocksDB发布V5.17.2版本

2018年10月24日,RocksDB发布V5.17.2版本。

RocksDB是Facebook在LevelDB基础上用C++写的高效内嵌式K/V存储引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底层的存储都是基于RocksDB来构建。

PostgreSQL发布11版本

2018年10月18日,PostgreSQL 11发布。

1、PostgreSQL 11的重大增强

2、PostgreSQL 插件动态

1)分布式插件citus发布 8.1

citus是PostgreSQL的一款sharding插件,目前国内苏宁、铁总、探探有较大量使用案例。

2)地理信息插件postgis发布2.5.1

PostGIS是专业的时空数据库插件,在测绘、航天、气象、地震、国土资源、地图等时空专业领域应用广泛。同时在互联网行业也得到了对GIS有性能、功能深度要求的客户青睐,比如共享出行、外卖等客户。

3)时序插件timescale发布1.1.1

timescale是PostgreSQL的一款时序数据库插件,在IoT行业中有非常好的应用。github star数目前有5000多,是一个非常火爆的插件。

4)流计算插件 pipelinedb 正式插件化

Pipelinedb是PostgreSQL的一款流计算插件,使用这个创建可以对高速写入的数据进行实时根据定义的聚合规则进行聚合(支持概率计算),实时根据定义的规则触发事件(支持事件处理函数的自定义)。可用于IoT,监控,FEED实时计算等场景。

3、PostgreSQL衍生开源产品动态

1)agensgraph发布 2.0.0版本

agensgraph是兼容PostgreSQL、opencypher的专业图数据库,适合图式关系的管理。

2)gpdb发布5.15

gpdb是兼容PostgreSQL的mpp数据库,适合OLAP场景。近两年,gpdb一直在追赶PostgreSQL的社区版本,预计很快会追上10的PostgreSQL,在TP方面的性能也会得到显著提升。

3)antdb发布3.2

antdb是以Postgres-XC为基础开发的一款PostgreSQL sharding数据库,亚信主导开发,开源,目前主要服务于亚信自有客户。

4)迁移工具MTK发布52版本

MTK是EDB提供的可以将Oracle、PostgreSQL、MySQL、MSSQL、Sybase数据库迁移到PostgreSQL, PPAS的产品,迁移速度可以达到100万行/s以上。

DB2发布 11.1.4.4版本

DB2最新发布Mod Pack 4 and Fix Pack 4,包含以下几方面的改动及增强:

1、性能

2、高可用

3、管理视图

4、应用开发方面

5、联邦功能

6、pureScale

NoSQL家族

Redis发布5.0.3版本

MongoDB升级更新MongoDB Mobile和MongoDB Stitch

2018年11月21日,MongoDB升级更新MongoDB Mobile和MongoDB Stitch,助力开发人员提升工作效率。

MongoDB 公司日前发布了多项新产品功能,旨在更好地帮助开发人员在世界各地管理数据。通过利用存储在移动设备和后台数据库的数据之间的实时、自动的同步特性,MongoDB Mobile通用版本助力开发人员构建更快捷、反应更迅速的应用程序。此前,这只能通过在移动应用内部安装一个可供选择或限定功能的数据库来实现。

MongoDB Mobile在为客户提供随处运行的自由度方面更进了一步。用户在iOS和安卓终端设备上可拥有MongoDB所有功能,将网络边界扩展到其物联网资产范畴。应用系统还可以使用MongoDB Stitch的软件开发包访问移动客户端或后台数据,帮助开发人员通过他们希望的任意方式查询移动终端数据和物联网数据,包括本地读写、本地JSON存储、索引和聚合。通过Stitch移动同步功能(现可提供beta版),用户可以自动对保存在本地的数据以及后台数据库的数据进行同步。

本期新秀:Cassandra发布3.11.3版本

2018年8月11日,Cassandra发布正式版3.11.3。

Apache Cassandra是一款开源分布式NoSQL数据库系统,使用了基于Google BigTable的数据模型,与面向行(row)的传统关系型数据库或键值存储key-value数据库不同,Cassandra使用的是宽列存储模型(Wide Column Stores)。与BigTable和其模仿者HBase不同,数据并不存储在分布式文件系统如GFS或HDFS中,而是直接存于本地。

Cassandra的系统架构与Amazon DynamoDB类似,是基于一致性哈希的完全P2P架构,每行数据通过哈希来决定应该存在哪个或哪些节点中。集群没有master的概念,所有节点都是同样的角色,彻底避免了整个系统的单点问题导致的不稳定性,集群间的状态同步通过Gossip协议来进行P2P的通信。

3.11.3版本的一些bug fix和改进:

NewSQL家族

TiDB 发布2.1.2版本

2018 年 12 月 22 日,TiDB 发布 2.1.2 版,TiDB-Ansible 相应发布 2.1.2 版本。该版本在 2.1.1 版的基础上,对系统兼容性、稳定性做出了改进。

TiDB 是一款定位于在线事务处理/在线分析处理( HTAP: Hybrid Transactional/Analytical Processing)的融合型数据库产品。除了底层的 RocksDB 存储引擎之外,分布式SQL层、分布式KV存储引擎(TiKV)完全自主设计和研发。

TiDB 完全开源,兼容MySQL协议和语法,可以简单理解为一个可以无限水平扩展的MySQL,并且提供分布式事务、跨节点 JOIN、吞吐和存储容量水平扩展、故障自恢复、高可用等优异的特性;对业务没有任何侵入性,简化开发,利于维护和平滑迁移。

TiDB:

PD:

TiKV:

Tools:

1)TiDB-Lightning

2)TiDB-Binlog

EsgynDB发布R2.5版本

2018年12月22日,EsgynDB R2.5版本正式发布。

作为企业级产品,EsgynDB 2.5向前迈进了一大步,它拥有以下功能和改进:

CockroachDB发布2.1版本

2018年10月30日,CockroachDB正式发布2.1版本,其新增特性如下:

新增企业级特性:

新增SQL特性:

新增内核特性:

Admin UI增强:

时间序列

本期新秀:TimescaleDB发布1.0版本

10月底,TimescaleDB 1.0宣布正式推出,官方表示该版本已可用于生产环境,支持完整SQL和扩展。

TimescaleDB是基于PostgreSQL数据库开发的一款时序数据库,以插件化的形式打包提供,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。

TimescaleDB架构:

数据自动按时间和空间分片(chunk)

更新亮点:

大数据生态圈

Hadoop发布2.9.2版本

2018年11月中旬,Hadoop在2.9分支上发布了新的2.9.2版本,该版本进行了204个大大小小的变更,主要变更如下:

Greenplum 发布5.15版本

Greenplum最新的5.15版本中发布了流式数据加载工具。

该版本中的Greenplum Streem Server组件已经集成了Kafka流式加载功能,并通过了Confluent官方的集成认证,其支持的主要功能如下:

国产数据库概览

K-DB发布数据库一体机版

2018年11月7日,K-DB发布了数据库一体机版。该版本更新情况如下:

OceanBase迁移服务发布1.0版本

1月4日,OceanBase 正式发布OMS迁移服务1.0版本。

以下内容包含 OceanBase 迁移服务的重要特性和功能:

SequoiaDB发布3.0.1新版本

1、架构

1)完整计算存储分离架构,兼容MySQL协议、语法

计算存储分离体系以松耦合的方式将计算与存储层分别部署,通过标准接口或插件对各个模块和组件进行无缝替换,在计算层与存储层均可实现自由的弹性伸缩。

SequoiaDB巨杉数据库“计算-存储分离”架构详细示意

用户可以根据自身业务特征选择面向交易的SQL解析器(例如MySQL或PGSQL)或面向统计分析的执行引擎(例如SparkSQL)。众所周知,使用不同的SQL优化与执行方式,数据库的访问性能可能会存在上千上万倍的差距。计算存储分离的核心思想便是在数据存储层面进行一体化存储,在计算层面则利用每种执行引擎的特点针对不同业务场景进行选择和优化,用户可以在存储层进行逻辑与物理的隔离,将面向高频交易的前端业务与面向高吞吐量的统计分析使用不同的硬件进行存储,确保在多类型数据访问时互不干扰,以真正达到生产环境可用的多租户与HTAP能力。

2、其他更新信息

1)接口变更:

2)主要特性:

云数据库

本期新秀:腾讯发布数据库CynosDB,开启公测

1、News

1)腾讯云数据库MySQL2018年重大更新:

2)腾讯云数据库MongoDB2018年重大更新:

3)腾讯云数据库Redis/CKV+2018年重大更新:

4)腾讯云数据库CTSDB2018年重大更新:

2、Redis 4.0集群版商业化上线

2018年10月,腾讯云数据库Redis 4.0集群版完成邀测、公测、商业化三个迭代,在广州、上海、北京正式全量商业化上线。

产品特性:

使用场景:

官网文档:

3、腾讯自研数据库CynosDB发布,开启公测

2018年11月22日,腾讯云召开新一代自研数据库CynosDB发布会,业界第一款全面兼容市面上两大最主流的开源数据库MySQL和PostgreSQL的高性能企业级分布式云数据库。

本期新秀:京东云DRDS发布1.0版本

12月24日,京东云分布式关系型数据库DRDS正式发布1.0版本。

DRDS是京东云精心自研的数据库中间件产品,获得了2018年 ”可信云技术创新奖”。DRDS可实现海量数据下的自动分库分表,具有高性能,分布式,弹性升级,兼容MySQL等优点,适用于高并发、大规模数据的在线交易, 历史 数据查询,自动数据分片等业务场景,历经多次618,双十一的考验,已经在京东集团内大规模使用。

京东云DRDS产品有以下主要特性

1)自动分库分表

通过简单的定义即可自动实现分库分表,将数据实际存放在多个MySQL实例的数据库中,但呈现给应用程序的依旧是一张表,对业务透明,应用程序几乎无需改动,实现了对数据库存储和处理能力的水平扩展。

2)分布式架构

基于分布式架构的集群方案,多个对等节点同时对外提供服务,不但可有效规避服务的单点故障,而且更加容易扩展。

3)超强性能

具有极高的处理能力,双节点即可支持数万QPS,满足用户超大规模处理能力的需求。

4)兼容MySQL

兼容绝大部分MySQL语法,包括MySQL语法、数据类型、索引、常用函数、排序、关联等DDL,DML语句,使用成本低。

参考链接:

RadonDB发布1.0.3版本

2018年12月26日,MyNewSQL领域的RadonDB云数据库发布1.0.3版本。

推出dbaplus Newsletter的想法

dbaplus Newsletter旨在向广大技术爱好者提供数据库行业的最新技术发展趋势,为社区的技术发展提供一个统一的发声平台。为此,我们策划了RDBMS、NoSQL、NewSQL、时间序列、大数据生态圈、国产数据库、云数据库等几个版块。

我们不以商业宣传为目的,不接受任何商业广告宣传,严格审查信息源的可信度和准确性,力争为大家提供一个纯净的技术学习环境,欢迎大家监督指正。

至于Newsletter发布的周期,目前计划是每三个月左右会做一次跟进, 下期计划时间是2019年4月14日~4月25日, 如果有相关的信息提供请发送至邮箱:newsletter@dbaplus.cn

感谢名单

最后要感谢那些提供宝贵信息和建议的专家朋友,排名不分先后。

往期回顾:

↓↓别忘了点这里下载 2019年1月 完整版Newsletter 哦~

技术选型 - OLAP大数据技术哪家强?

Lambda架构的核心理念是“流批一体化”,因为随着机器性能和数据框架的不断完善,用户其实不关心底层是如何运行的,批处理也好,流式处理也罢,能按照统一的模型返回结果就可以了,这就是Lambda架构诞生的原因。现在很多应用,例如Spark和Flink,都支持这种结构,也就是数据进入平台后,可以选择批处理运行,也可以选择流式处理运行,但不管怎样,一致性都是相同的。

Kylin

Kylin的主要特点是预计算,提前计算好各个cube,这样的优点是查询快速,秒级延迟;缺点也非常明显,灵活性不足,无法做一些 探索 式的,关联性的数据分析。

适合的场景也是比较固定的,场景清晰的地方。

ClickHouse

Clickhouse由俄罗斯yandex公司开发。专为在线数据分析而设计。

Clickhouse最大的特点首先是快 ,为了快采用了列式储存,列式储存更好的支持压缩,压缩后的数据传输量变小,所以更快;同时支持分片,支持分布式执行,支持SQL。

ClickHouse很轻量级,支持数据压缩和最终数据一致性,其数据量级在PB级别。

另外Clickhouse不是为关联分析而生,所以多表关联支持的不太好。

同样Clickhouse不能修改或者删除数据,仅能用于批量删除或修改。没有完整的事务支持,不支持二级索引等等,缺点也非常明显。

与Kylin相比ClickHouse更加的灵活,sql支持的更好,但是相比Kylin,ClickHouse不支持大并发,也就是不能很多访问同时在线。

总之ClickHouse用于在线数据分析,支持功能简单。CPU 利用率高,速度极快。最好的场景用于行为统计分析。

Hive

Hive这个工具,大家一定很熟悉,大数据仓库的首选工具。可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能。

主要功能是可以将sql语句转换为相对应的MapReduce任务进行运行,这样可能处理海量的数据批量,

Hive与HDFS结合紧密,在大数据开始初期,提供一种直接使用sql就能访问HDFS的方案,摆脱了写MapReduce任务的方式,极大的降低了大数据的门槛。

当然Hive的缺点非常明显,定义的是分钟级别的查询延迟,估计都是在比较理想的情况。 但是作为数据仓库的每日批量工具,的确是一个稳定合格的产品。

Presto

Presto极大的改进了Hive的查询速度,而且Presto 本身并不存储数据,但是可以接入多种数据源,并且支持跨数据源的级联查询,支持包括复杂查询、聚合、连接等等。

Presto没有使用MapReduce,它是通过一个定制的查询和执行引擎来完成的。它的所有的查询处理是在内存中,这也是它的性能很高的一个主要原因。

Presto由于是基于内存的,缺点可能是多张大表关联操作时易引起内存溢出错误。

另外Presto不支持OLTP的场景,所以不要把Presto当做数据库来使用。

Presto相比ClickHouse优点主要是多表join效果好。相比ClickHouse的支持功能简单,场景支持单一,Presto支持复杂的查询,应用范围更广。

Impala

Impala是Cloudera 公司推出,提供对 HDFS、Hbase 数据的高性能、低延迟的交互式 SQL 查询功能。

Impala 使用 Hive的元数据, 完全在内存中计算。是CDH 平台首选的 PB 级大数据实时查询分析引擎。

Impala 的缺点也很明显,首先严重依赖Hive,而且稳定性也稍差,元数据需要单独的mysql/pgsql来存储,对数据源的支持比较少,很多nosql是不支持的。但是,估计是cloudera的国内市场推广做的不错,Impala在国内的市场不错。

SparkSQL

SparkSQL的前身是Shark,它将 SQL 查询与 Spark 程序无缝集成,可以将结构化数据作为 Spark 的 RDD 进行查询。

SparkSQL后续不再受限于Hive,只是兼容Hive。

SparkSQL提供了sql访问和API访问的接口。

支持访问各式各样的数据源,包括Hive, Avro, Parquet, ORC, JSON, and JDBC。

Drill

Drill好像国内使用的很少,根据定义,Drill是一个低延迟的分布式海量数据交互式查询引擎,支持多种数据源,包括hadoop,NoSQL存储等等。

除了支持多种的数据源,Drill跟BI工具集成比较好。

Druid

Druid是专为海量数据集上的做高性能 OLAP而设计的数据存储和分析系统。

Druid 的架构是 Lambda 架构,分成实时层和批处理层。

Druid的核心设计结合了数据仓库,时间序列数据库和搜索系统的思想,以创建一个统一的系统,用于针对各种用例的实时分析。Druid将这三个系统中每个系统的关键特征合并到其接收层,存储格式,查询层和核心体系结构中。

目前 Druid 的去重都是非精确的,Druid 适合处理星型模型的数据,不支持关联操作。也不支持数据的更新。

Druid最大的优点还是支持实时与查询功能,解约了很多开发工作。

Kudu

kudu是一套完全独立的分布式存储引擎,很多设计概念上借鉴了HBase,但是又跟HBase不同,不需要HDFS,通过raft做数据复制;分片策略支持keyrange和hash等多种。

数据格式在parquet基础上做了些修改,支持二级索引,更像一个列式存储,而不是HBase schema-free的kv方式。

kudu也是cloudera主导的项目,跟Impala结合比较好,通过impala可以支持update操作。

kudu相对于原有parquet和ORC格式主要还是做增量更新的。

Hbase

Hbase使用的很广,更多的是作为一个KV数据库来使用,查询的速度很快。

Hawq

Hawq是一个Hadoop原生大规模并行SQL分析引擎,Hawq采用 MPP 架构,改进了针对 Hadoop 的基于成本的查询优化器。

除了能高效处理本身的内部数据,还可通过 PXF 访问 HDFS、Hive、HBase、JSON 等外部数据源。HAWQ全面兼容 SQL 标准,还可用 SQL 完成简单的数据挖掘和机器学习。无论是功能特性,还是性能表现,HAWQ 都比较适用于构建 Hadoop 分析型数据仓库应用。

分库分表技术及技术方案

一、分库分表的必要性

分库分表技术的使用,主要是数据库产生了瓶颈,如单库的并发访问或单表的查询都超出了阈值。对系统使用造成一定的影响,不得已而产生的技术。

通过分库分表技术来解决此类问题,但正因为使用此技术,会产生ACID一系列的问题,各类中间件解决此类问题各有各的优势。

提示:如场景无必要,千万不要使用分库分表。

二、分库分表的思路

1、垂直区分

垂直分库:从业务角度,一个库分成多个库,如把订单和用户信息分成两个库来存储。这样的好处就是可以微服务了。每块的业务单独部署,互不影响,通过接口去调用。

垂直分表:把大表分成多个小表,如热点数据和非热点数据分开,提高查询速度。

2、水平区分

水平分表:同一业务如数据量大了以后,根据一定的规则分为不同的表进行存储。

水平分库:如订单分成多个库存储,分解服务器压力。

以上一般来说,垂直分库和水平分表用的会多些。

三、分库分表的原理分析

分库分表常用的方案:Hash取模方案和range范围方案;

路由算法为最主要的算法,指得是把路由的Key按照指定的算法进行存放;

1、Hash取模方案

根据取余分配到不同的表里。要根据实际情况确认模的大小。此方案由于平均分配,不存在热点问题,但数据迁移很复杂。

2、Range范围方案

range根据范围进行划分,如日期,大小。此方案不存在数据迁移,但存在热点问题。

四、分库分表的技术选型

1、技术选型

解决方案主要分为4种:MySQL的分区技术、NoSql、NewSQL、MySQL的分库分表。

(1)mysql分区技术:把一张表存放在不同存储文件。由于无法负载,使用较少。

(2)NoSQL(如MongoDB):如是订单等比较重要数据,强关联关系,需约束一致性,不太适应。

(3)NewSql(具有NoSQL对海量数据的存储管理能力,还保持了传统数据库支持ACID和SQL等特性):如TiDB可满足需求。

(4)MySQL的分库分表:如使用mysql,此种方案为主流方式。

2、中间件

解决此类问题的中间件主要为:Proxy模式、Client模式。

(1)Proxy模式

(2)Client模式

把分库分表相关逻辑存放在客户端,一版客户端的应用会引用一个jar,然后再jar中处理SQL组合、数据库路由、执行结果合并等相关功能。

(3)中间件的比较

由于Client模式少了一层,运维方便,相对来说容易些。

五、分库分表的实践

根据容量(当前容量和增长量)评估分库或分表个数 - 选key(均匀)- 分表规则(hash或range等)- 执行(一般双写)- 扩容问题(尽量减少数据的移动)。

在这里我们选用中间件share-jdbc。

1、引入maven依赖

2、spring boot规则配置

行表达式标识符可以使用${...}或$-{...},但前者与Spring本身的属性文件占位符冲突,因此在Spring环境中使用行表达式标识符建议使用$-{...}。

3、创建DataSource

通过ShardingDataSourceFactory工厂和规则配置对象获取ShardingDataSource,ShardingDataSource实现自JDBC的标准接口DataSource。然后即可通过DataSource选择使用原生JDBC开发,或者使用JPA, MyBatis等ORM工具。

如何选择NoSQL数据库

NoSQL,指的是非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的

SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。

NoSQL(NoSQL

= Not Only SQL

),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数

据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

从这一新兴技术中选择一款正确的NoSQL数据库是非常具有挑战性的。比一下网建议在选择时考虑以下因素:

并发控制

发控制指的是当多个用户同时更新运行时,用于保护数据库完整性的各种技术。并发机制不正确可能导致脏读、幻读和不可重复读等此类问题。并发控制的目的是保

证一个用户的工作不会对另一个用户的工作产生不合理的影响。在某些情况下,这些措施保证了当用户和其他用户一起操作时,所得的结果和她单独操作时的结果是

一样的。在另一些情况下,这表示用户的工作按预定的方式受其他用户的影响。

封锁

就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。

封锁是一次只允许一个用户读取或修改的一种机制,是实现并发控制的一个非常重要的技术。

MVCC

Multi-Version Concurrency Control多版本并发控制,维持一个数据的多个版本使读写操作没有冲突。MVCC优化了数据库并发系统,使系统在有大量并发用户时得到最高的性能,并且可以不用关闭服务器就直接进行热备份。

ACID

数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久

性(Durability)。一个支持事务(Transaction)的数据库系统,必需要具有这四种特性,否则在事务过程(Transaction

processing)当中无法保证数据的正确性,交易过程极可能达不到交易方的要求。

None

一些系统不提供原子性。

镜像

数据库镜像是DBMS根据DBA的要求,自动把整个数据库或其中的关键数据复制到另一个磁盘上,每当主数据库更新时,DBMS会自动把更新后的数据复制过去,即DBMS自动保证镜像数据与主数据的一致性。

镜像分为同步和异步。

数据存储

指的是数据的物理特性怎样被存储在数据库中。

磁盘 数据被存储在硬盘驱动器里;

GFS或谷歌文件系统是一个由谷歌开发的专有的分布式文件系统;

Hadoop是Apache软件框架,免费许可下支持数据密集型分布式应用程序;

RAM随机存储器;

插件 可以添加外部插件;

Amazon S3通过Web服务接口提供存储;

BDB:BDB

全称是 “Berkeley DB”,它是MySQL具有事务能力的表类型,由Sleepycat

Software开发。BDB表类型提供了MySQL用户长久期盼的功能,即事务控制能力。在任何RDBMS中,事务控制能力都是一种极其重要和宝贵的功

能。事务控制能力使得我们能够确保一组命令确实已经全部执行成功,或者确保当任何一个命令出现错误时所有命令的执行结果均被退回。

实现语言

实现语言会影响数据库的发展速度。典型的NoSQL数据库是用低级语言如C / C + +编写的。另一方面,那些更高层次的语言如Java,使自定义更容易。

实现语言有:C, C++, Erlang, Java, Python

特性

考虑下列哪一个特点对你的数据库是最重要的:

持久性

可用性

一致性

分区容忍性

证书类型

下面这些许可证是一个不同的开放源码许可的形式:

GPL:通用公共许可证

BSD:伯克利软件分发

MPL:Mozilla公共许可证

EPL:Eclipse公共许可证

IDPL:最初的开发者的公共许可证

LGPL:较宽松通用公共许可证

存储类型

存储类型是NoSQL数据库最大的不同,是决定使用哪款数据库的一个首要指标。

关键字:支持get、put和删除操作

按列存储:相对于传统的按行存储,数据集成容易多了

面向文件系统:存储像是JSON或XML这样的结构化文件,很容易就能从面向对象软件中获取数据。

nosql数据库一般有哪几种类型?分别用在什么场景

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

它们击碎了性能瓶颈。

NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。

没有过多的操作。

虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。

Bootstrap支持

因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

优点:

易扩展

NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。

大数据量,高性能

NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。

灵活的数据模型

NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。

高可用

NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。

主要应用:

Apache HBase

这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。

Apache Storm

用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。

Apache Spark

该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。

Apache Hadoop

该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。

Apache Drill

你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。

Apache Sqoop

也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。

Apache Giraph

这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。

Cloudera Impala

Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。

Gephi

它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。

MongoDB

这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。

十大顶尖公司:

Amazon Web Services

Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。

Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。

Cloudera

Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。

Hortonworks

和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。

IBM

当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”

Intel

和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。

MapR Technologies

MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。

Microsoft

微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。

微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”

Pivotal Software

EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。

Teradata

对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。

AMPLab

通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。

高性能 NoSQL

关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:

表结构是强约束的,业务变更时扩充很麻烦。

如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。

全文搜索只能使用 Like 进行整表扫描,性能非常低。

针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分为4类:

Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。

以 list 为例:

LPOP key 是移除并返回队列左边的第一个元素。

如果用关系数据库就比较麻烦了,需要操作:

Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。

最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。

特点:

以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。

文档数据库的主要缺点:

关系数据库是按行来存储的,列式数据库是按照列来存储数据。

按行存储的优势:

在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。

而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。

除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。

列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。

一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。

关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:

假设有一个交友网站,信息表如下:

需要匹配性别、地点、语言列。

需要匹配性别、地点、爱好列。

实际搜索中,各种排列组合非常多,关系数据库很难支持。

全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:

所以特别适合根据关键词来查询文档内容。

上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。


新闻名称:nosql技术选型,nosql的技术特点
文章地址:http://jkwzsj.com/article/dscsogp.html

其他资讯