189 8069 5689

c语言算插值函数 c语言插值函数库

求c语言写的双三次插值函数

void SPL(int n, double *x, double *y, int ni, double *xi, double *yi); 是你所要。

10年积累的做网站、成都做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有叶城免费网站建设让你可以放心的选择与我们合作。

已知 n 个点 x,y; x 必须已按顺序排好。要插值 ni 点,横坐标 xi[], 输出 yi[]。

程序里用double 型,保证计算精度。

SPL调用现成的程序。

现成的程序很多。端点处理方法不同,结果会有不同。想同matlab比较,你需 尝试 调用 spline()函数 时,令 end1 为 1, 设 slope1 的值,令 end2 为 1 设 slope2 的值。

#include stdio.h

#include math.h

int spline (int n, int end1, int end2,

double slope1, double slope2,

double x[], double y[],

double b[], double c[], double d[],

int *iflag)

{

int nm1, ib, i, ascend;

double t;

nm1 = n - 1;

*iflag = 0;

if (n 2)

{ /* no possible interpolation */

*iflag = 1;

goto LeaveSpline;

}

ascend = 1;

for (i = 1; i n; ++i) if (x[i] = x[i-1]) ascend = 0;

if (!ascend)

{

*iflag = 2;

goto LeaveSpline;

}

if (n = 3)

{

d[0] = x[1] - x[0];

c[1] = (y[1] - y[0]) / d[0];

for (i = 1; i nm1; ++i)

{

d[i] = x[i+1] - x[i];

b[i] = 2.0 * (d[i-1] + d[i]);

c[i+1] = (y[i+1] - y[i]) / d[i];

c[i] = c[i+1] - c[i];

}

/* ---- Default End conditions */

b[0] = -d[0];

b[nm1] = -d[n-2];

c[0] = 0.0;

c[nm1] = 0.0;

if (n != 3)

{

c[0] = c[2] / (x[3] - x[1]) - c[1] / (x[2] - x[0]);

c[nm1] = c[n-2] / (x[nm1] - x[n-3]) - c[n-3] / (x[n-2] - x[n-4]);

c[0] = c[0] * d[0] * d[0] / (x[3] - x[0]);

c[nm1] = -c[nm1] * d[n-2] * d[n-2] / (x[nm1] - x[n-4]);

}

/* Alternative end conditions -- known slopes */

if (end1 == 1)

{

b[0] = 2.0 * (x[1] - x[0]);

c[0] = (y[1] - y[0]) / (x[1] - x[0]) - slope1;

}

if (end2 == 1)

{

b[nm1] = 2.0 * (x[nm1] - x[n-2]);

c[nm1] = slope2 - (y[nm1] - y[n-2]) / (x[nm1] - x[n-2]);

}

/* Forward elimination */

for (i = 1; i n; ++i)

{

t = d[i-1] / b[i-1];

b[i] = b[i] - t * d[i-1];

c[i] = c[i] - t * c[i-1];

}

/* Back substitution */

c[nm1] = c[nm1] / b[nm1];

for (ib = 0; ib nm1; ++ib)

{

i = n - ib - 2;

c[i] = (c[i] - d[i] * c[i+1]) / b[i];

}

b[nm1] = (y[nm1] - y[n-2]) / d[n-2] + d[n-2] * (c[n-2] + 2.0 * c[nm1]);

for (i = 0; i nm1; ++i)

{

b[i] = (y[i+1] - y[i]) / d[i] - d[i] * (c[i+1] + 2.0 * c[i]);

d[i] = (c[i+1] - c[i]) / d[i];

c[i] = 3.0 * c[i];

}

c[nm1] = 3.0 * c[nm1];

d[nm1] = d[n-2];

}

else

{

b[0] = (y[1] - y[0]) / (x[1] - x[0]);

c[0] = 0.0;

d[0] = 0.0;

b[1] = b[0];

c[1] = 0.0;

d[1] = 0.0;

}

LeaveSpline:

return 0;

}

double seval (int n, double u,

double x[], double y[],

double b[], double c[], double d[],

int *last)

{

int i, j, k;

double w;

i = *last;

if (i = n-1) i = 0;

if (i 0) i = 0;

if ((x[i] u) || (x[i+1] u))

{

i = 0;

j = n;

do

{

k = (i + j) / 2;

if (u x[k]) j = k;

if (u = x[k]) i = k;

}

while (j i+1);

}

*last = i;

w = u - x[i];

w = y[i] + w * (b[i] + w * (c[i] + w * d[i]));

return (w);

}

void SPL(int n, double *x, double *y, int ni, double *xi, double *yi)

{

double *b, *c, *d;

int iflag,last,i;

b = (double *) malloc(sizeof(double) * n);

c = (double *)malloc(sizeof(double) * n);

d = (double *)malloc(sizeof(double) * n);

if (!d) { printf("no enough memory for b,c,d\n");}

else {

spline (n,0,0,0,0,x,y,b,c,d,iflag);

if (iflag==0) printf("I got coef b,c,d now\n"); else printf("x not in order or other error\n");

for (i=0;ini;i++) yi[i] = seval(ni,xi[i],x,y,b,c,d,last);

free(b);free(c);free(d);

};

}

main(){

double x[6]={0.,1.,2.,3.,4.,5};

double y[6]={0.,0.5,2.0,1.6,0.5,0.0};

double u[8]={0.5,1,1.5,2,2.5,3,3.5,4};

double s[8];

int i;

SPL(6, x,y, 8, u, s);

for (i=0;i8;i++) printf("%lf %lf \n",u[i],s[i]);

return 0;

}

求用c语言编写牛顿插值法

牛顿插值法:

#includestdio.h

#includealloc.h

float Language(float *x,float *y,float xx,int n)

{

int i,j;

float *a,yy=0.0;

a=(float *)malloc(n*sizeof(float));

for(i=0;i=n-1;i++)

{

a[i]=y[i];

for(j=0;j=n-1;j++)

if(j!=i)a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

void main()

{

float x[4]={0.56160,0.5628,0.56401,0.56521};

float y[4]={0.82741,0.82659,0.82577,0.82495};

float xx=0.5635,yy;

float Language(float *,float *,float,int);

yy=Language(x,y,xx,4);

printf("x=%f,y=%f\n",xx,yy);

getchar();

}

2.牛顿插值法#includestdio.h

#includemath.h

#define N 4

void Difference(float *x,float *y,int n)

{

float *f;

int k,i;

f=(float *)malloc(n*sizeof(float));

for(k=1;k=n;k++)

{

f[0]=y[k];

for(i=0;ik;i++)

f[i+1]=(f[i]-y[i])/(x[k]-x[i]);

y[k]=f[k];

}

return;

}

main()

{

int i;

float varx=0.895,b;

float x[N+1]={0.4,0.55,0.65,0.8,0.9};

float y[N+1]={0.41075,0.57815,0.69675,0.88811,1.02652};

Difference(x,(float *)y,N);

b=y[N];

for(i=N-1;i=0;i--)b=b*(varx-x[i])+y[i];

printf("Nn(%f)=%f",varx,b);

getchar();

}

留下个邮箱,我发给你:牛顿插值法的程序设计与应用

高分悬赏 求三维数据点C语言插值计算程序

问题补充,因字数限制,挪到这

1.拉格朗日插值简介:

对给定的n个插值节点x1,x2,…,xn,及其对应的函数值y1=f(x1), y2=f(x2),…, yn=f(xn);使用拉格朗日插值公式,计算在x点处的对应的函数值f(x);

2.一维拉格朗日插值c语言程序:

Int lagrange(x0, y0, n, x, y)

Float xo[], yo[], x;

Int n;

Float *y

{

Int i, j;

Float p;

*y=0;

If (n1)

{

For(i=0;in;i++)

{

P=1;

For(j=1;jn;j++)

{

If(i!=J)

P=p*(x-x0[j]/x0[i]-x0[j]);

}

*y=*y+p*y0[i];

Return(0);

}

Else

Return(-1);

}

3.例题。已知函数如下表所示,求x=0.472处的函数值:

X 0.46 0.47 0.48 0.49

Y 0.484655 0.4903745 0.502750 0.511668

计算这个问题的c语言程序如下:

#minclude stdio

#includeMnath.h

Main()

{

Float x0[4]={ 0.46, 0.47,0.48,0.49};

Float y0[4]={ 0.484655 ,0.4903745 ,0.502750 ,0.511668};

Float x, y;

Int n, rtn;

N=4;

X=0.472;

Rth=lagrange(x0,y0,n,x,y);

If(rtn=0)

{

Prinf(“Y(0.472)=:%f\n”,y);

}

Else

{

Prinf(“n must be larger than 1.\n”);

}

}

计算结果:Y(0.472)=:0.495553

4.问题补充

我的问题与上面的例子类似,计算三维空间一点(x,y,z)对应的函数值(Vx,Vy,Vz).不同的是自变量(point_coordinate.txt)为三维空间散乱点(不是正方体的顶点),因变量(point_data.txt)为矢量(向量 )。插值算法比较多,常数法,拉格朗日插值,埃特金插值,三阶样条插值等。最简单的就是常数法,查找离目标点(x,y,z)距离最近的已知自变量(Xi,Yi,Zi),把该点的函数值赋给目标点做函数值,求高手帮忙写写。

用C语言实现拉格朗日插值、牛顿插值、等距结点插值算法

#includestdio.h

#includestdlib.h

#includeiostream.h

typedef struct data

{

float x;

float y;

}Data;//变量x和函数值y的结构

Data d[20];//最多二十组数据

float f(int s,int t)//牛顿插值法,用以返回插商

{

if(t==s+1)

return (d[t].y-d[s].y)/(d[t].x-d[s].x);

else

return (f(s+1,t)-f(s,t-1))/(d[t].x-d[s].x);

}

float Newton(float x,int count)

{

int n;

while(1)

{

cout"请输入n值(即n次插值):";//获得插值次数

cinn;

if(n=count-1)// 插值次数不得大于count-1次

break;

else

system("cls");

}

//初始化t,y,yt。

float t=1.0;

float y=d[0].y;

float yt=0.0;

//计算y值

for(int j=1;j=n;j++)

{

t=(x-d[j-1].x)*t;

yt=f(0,j)*t;

//coutf(0,j)endl;

y=y+yt;

}

return y;

}

float lagrange(float x,int count)

{

float y=0.0;

for(int k=0;kcount;k++)//这儿默认为count-1次插值

{

float p=1.0;//初始化p

for(int j=0;jcount;j++)

{//计算p的值

if(k==j)continue;//判断是否为同一个数

p=p*(x-d[j].x)/(d[k].x-d[j].x);

}

y=y+p*d[k].y;//求和

}

return y;//返回y的值

}

void main()

{

float x,y;

int count;

while(1)

{

cout"请输入x[i],y[i]的组数,不得超过20组:";//要求用户输入数据组数

cincount;

if(count=20)

break;//检查输入的是否合法

system("cls");

}

//获得各组数据

for(int i=0;icount;i++)

{

cout"请输入第"i+1"组x的值:";

cind[i].x;

cout"请输入第"i+1"组y的值:";

cind[i].y;

system("cls");

}

cout"请输入x的值:";//获得变量x的值

cinx;

while(1)

{

int choice=3;

cout"请您选择使用哪种插值法计算:"endl;

cout" (0):退出"endl;

cout" (1):Lagrange"endl;

cout" (2):Newton"endl;

cout"输入你的选择:";

cinchoice;//取得用户的选择项

if(choice==2)

{

cout"你选择了牛顿插值计算方法,其结果为:";

y=Newton(x,count);break;//调用相应的处理函数

}

if(choice==1)

{

cout"你选择了拉格朗日插值计算方法,其结果为:";

y=lagrange(x,count);break;//调用相应的处理函数

}

if(choice==0)

break;

system("cls");

cout"输入错误!!!!"endl;

}

coutx" , "yendl;//输出最终结果

}


分享标题:c语言算插值函数 c语言插值函数库
路径分享:http://jkwzsj.com/article/dossohg.html

其他资讯