189 8069 5689

python图像滤波函数 python图片滤波

OpenCV-Python系列六:图像滤波

图像滤波是一种十分常见的图像处理手段。通常,你可以认为相邻位置像素是紧密联系的,它们共同来显示对某个物体,图像滤波则通过运算来排除图像中和周围相差大的像素。当然,这并不是绝对的, 有时候你为了评估图像的质量,也会将这些“特立独行”的像素作为选取的目标 。无论你采用什么方法,记住你要的目标就行,有时候你的目标可能是别人的背景。

创新互联建站专注于洛南企业网站建设,自适应网站建设,商城网站建设。洛南网站建设公司,为洛南等地区提供建站服务。全流程按需开发网站,专业设计,全程项目跟踪,创新互联建站专业和态度为您提供的服务

滤波常常会使得图像变得模糊(非绝对),那么,为什么你需要将一幅清晰的图像变得模糊呢?下面的例子应该可以解释。

高斯滤波采用满足正态分布的核模板,其参数的主要参数是标准差σ,代表核的离散程度,σ值越小,模板中心系数与边缘系数差越大,平滑的程度越小。

高斯滤波对图像采集过程中由于不良照明/高温引起的传感器噪声信号有较好的效果,消除了图像中的高频信号。

由于得到的是一维的Gaussian Kernel,你可以采用下面的方式转为二维的

为了便于直观感受高斯滤波的效果,使用Canny算子来提取轮廓对比,你可以试试在特征提取前加高斯滤波对比。

补充说明:对于均值滤波,你也可以使用cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]])来实现,需要将normalize设置为True,当设置normalize为False时,实现的是将kernel内像素相加,官方文档做出的描述为:

中值滤波对图像中的脉冲型(椒盐等)噪声信号处理效果好,当 你的应用场景存在这种颗粒感的噪声信号时,中值滤波会是一种很好的选择 。它,选取kernel区域内像素点集的中值最为锚点的像素值,对类似投票机制中的最高分(高灰阶点)和最低分(过低灰阶点)影响有很好的抑制作用。

如果你的应用涉及到图像美化,双边滤波可以初步达到你的期望,关于双边滤波,这里不做展开,由你来探索,其函数参数信息如下。

对于opencv-python的图像滤波部分有问题欢迎留言, Have Fun With OpenCV-Python, 下期见。

python的pillow库怎么使用

Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。

1)使用 Image 类

PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。

要从文件加载图像,可以使用open( )函数,在Image模块中:

[python] view plain copy

from PIL import Image

im = Image.open("E:/photoshop/1.jpg")

加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容:

[python] view plain copy

print(im.format, im.size, im.mode)

('JPEG', (600, 351), 'RGB')

format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。

如果文件打开错误,返回 IOError 错误。

只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:

[python] view plain copy

im.show()

2)读写图像

PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。

加载文件,并转化为png格式:

[python] view plain copy

"Python Image Library Test"

from PIL import Image

import os

import sys

for infile in sys.argv[1:]:

f,e = os.path.splitext(infile)

outfile = f +".png"

if infile != outfile:

try:

Image.open(infile).save(outfile)

except IOError:

print("Cannot convert", infile)

save() 方法的第二个参数可以指定文件格式。

3)创建缩略图

缩略图是网络开发或图像软件预览常用的一种基本技术,使用Python的Pillow图像库可以很方便的建立缩略图,如下:

[python] view plain copy

# create thumbnail

size = (128,128)

for infile in glob.glob("E:/photoshop/*.jpg"):

f, ext = os.path.splitext(infile)

img = Image.open(infile)

img.thumbnail(size,Image.ANTIALIAS)

img.save(f+".thumbnail","JPEG")

上段代码对photoshop下的jpg图像文件全部创建缩略图,并保存,glob模块是一种智能化的文件名匹配技术,在批图像处理中经常会用到。

注意:Pillow库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。

4)图像的剪切、粘贴与合并操作

Image 类包含的方法允许你操作图像部分选区,PIL.Image.Image.crop 方法获取图像的一个子矩形选区,如:

[python] view plain copy

# crop, paste and merge

im = Image.open("E:/photoshop/lena.jpg")

box = (100,100,300,300)

region = im.crop(box)

矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 200x200 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。

[python] view plain copy

region = region.transpose(Image.ROTATE_180)

im.paste(region, box)

当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色。

5)分离和合并颜色通道

对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中,很简单,如下:

[python] view plain copy

r,g,b = im.split()

im = Image.merge("RGB", (r,g,b))

对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道。

6)几何变换

对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ),如用法如下:

[python] view plain copy

out = im.resize((128,128))

out = im.rotate(45)  # degree conter-clockwise

其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度。在Pillow中,对于一些常见的旋转作了专门的定义:

[python] view plain copy

out = im.transpose(Image.FLIP_LEFT_RIGHT)

out = im.transpose(Image.FLIP_TOP_BOTTOM)

out = im.transpose(Image.ROTATE_90)

out = im.transpose(Image.ROTATE_180)

out = im.transpose(Image.ROTATE_270)

7)颜色空间变换

在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:

[python] view plain copy

cmyk = im.convert("CMYK")

gray = im.convert("L")

8)图像滤波

图像滤波在ImageFilter 模块中,在该模块中,预先定义了很多增强滤波器,可以通过filter( )函数使用,预定义滤波器包括:

BLUR、CONTOUR、DETAIL、EDGE_ENHANCE、EDGE_ENHANCE_MORE、EMBOSS、FIND_EDGES、SMOOTH、SMOOTH_MORE、SHARPEN。其中BLUR就是均值滤波,CONTOUR找轮廓,FIND_EDGES边缘检测,使用该模块时,需先导入,使用方法如下:

[python] view plain copy

from PIL import ImageFilter

imgF = Image.open("E:/photoshop/lena.jpg")

outF = imgF.filter(ImageFilter.DETAIL)

conF = imgF.filter(ImageFilter.CONTOUR)

edgeF = imgF.filter(ImageFilter.FIND_EDGES)

imgF.show()

outF.show()

conF.show()

edgeF.show()

除此以外,ImageFilter模块还包括一些扩展性强的滤波器:

class PIL.ImageFilter.GaussianBlur(radius=2)

Gaussian blur filter.

参数:

radius – Blur radius.    

class PIL.ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3)

Unsharp mask filter.

See Wikipedia’s entry on digital unsharp masking for an explanation of the parameters.

class PIL.ImageFilter.Kernel(size, kernel, scale=None, offset=0)

Create a convolution kernel. The current version only supports 3x3 and 5x5 integer and floating point kernels.

In the current version, kernels can only be applied to “L” and “RGB” images.

参数:

size – Kernel size, given as (width, height). In the current version, this must be (3,3) or (5,5).

kernel – A sequence containing kernel weights.

scale – Scale factor. If given, the result for each pixel is divided by this value. the default is the sum of the kernel weights.

offset – Offset. If given, this value is added to the result, after it has been divided by the scale factor.

class PIL.ImageFilter.RankFilter(size, rank)

Create a rank filter. The rank filter sorts all pixels in a window of the given size, and returns therank‘th value.

参数:

size – The kernel size, in pixels.

rank – What pixel value to pick. Use 0 for a min filter, size * size / 2 for a median filter, size * size - 1 for a max filter, etc.

class PIL.ImageFilter.MedianFilter(size=3)

Create a median filter. Picks the median pixel value in a window with the given size.

参数:

size – The kernel size, in pixels.    

class PIL.ImageFilter.MinFilter(size=3)

Create a min filter. Picks the lowest pixel value in a window with the given size.

参数:

size – The kernel size, in pixels.    

class PIL.ImageFilter.MaxFilter(size=3)

Create a max filter. Picks the largest pixel value in a window with the given size.

参数:

size – The kernel size, in pixels.    

class PIL.ImageFilter.ModeFilter(size=3)

Create a mode filter. Picks the most frequent pixel value in a box with the given size. Pixel values that occur only once or twice are ignored; if no pixel value occurs more than twice, the original pixel value is preserved.

参数:

size – The kernel size, in pixels.    

更多详细内容可以参考:PIL/ImageFilter

9)图像增强

图像增强也是图像预处理中的一个基本技术,Pillow中的图像增强函数主要在ImageEnhance模块下,通过该模块可以调节图像的颜色、对比度和饱和度和锐化等:

[python] view plain copy

from PIL import ImageEnhance

imgE = Image.open("E:/photoshop/lena.jpg")

imgEH = ImageEnhance.Contrast(imgE)

imgEH.enhance(1.3).show("30% more contrast")

图像增强:

class PIL.ImageEnhance.Color(image)

Adjust image color balance.

This class can be used to adjust the colour balance of an image, in a manner similar to the controls on a colour TV set. An enhancement factor of 0.0 gives a black and white image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Contrast(image)

Adjust image contrast.

This class can be used to control the contrast of an image, similar to the contrast control on a TV set. An enhancement factor of 0.0 gives a solid grey image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Brightness(image)

Adjust image brightness.

This class can be used to control the brighntess of an image. An enhancement factor of 0.0 gives a black image. A factor of 1.0 gives the original image.

class PIL.ImageEnhance.Sharpness(image)

Adjust image sharpness.

This class can be used to adjust the sharpness of an image. An enhancement factor of 0.0 gives a blurred image, a factor of 1.0 gives the original image, and a factor of 2.0 gives a sharpened image.

图像增强的详细内容可以参考:PIL/ImageEnhance

除了以上介绍的内容外,Pillow还有很多强大的功能:

PIL.Image.alpha_composite(im1, im2)

PIL.Image.blend(im1, im2, alpha)

PIL.Image.composite(image1, image2, mask)

PIL.Image.eval(image, *args)

PIL.Image.fromarray(obj, mode=None)

PIL.Image.frombuffer(mode, size, data, decoder_name='raw', *args)

数字图像处理Python实现图像灰度变换、直方图均衡、均值滤波

import CV2

import copy

import numpy as np

import random

使用的是pycharm

因为最近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以第一步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

第一个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a 255/3:

b = a/2

elif a 255/3*2:

b = (a-255/3)*2 + 255/6

else:

b = (a-255/3*2)/2 + 255/6 +255/3*2

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H * W * 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S * sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY] 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1)=0.5:

NoiseImg[randX,randY]=0

else:

NoiseImg[randX,randY]=255

return NoiseImg

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

下面开始均值滤波和中值滤波了

就以n x n为例,均值滤波就是用这n x n个像素点灰度值的平均值代替中心点,而中值就是中位数代替中心点,边界点周围补0;前两个函数的作用是算出这个点的灰度值,后两个是对整张图片进行

#均值滤波模板

def mean_filter(x, y, step, img):

sum_s = 0

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (step*step)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(step*step/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)


文章名称:python图像滤波函数 python图片滤波
路径分享:http://jkwzsj.com/article/dosoedc.html

其他资讯