189 8069 5689

函数关系图Python 函数关系图像一定要直线吗

python两个函数图像怎么分开画而且加表格

一、函数说明

创新新互联,凭借十载的成都网站制作、做网站经验,本着真心·诚心服务的企业理念服务于成都中小企业设计网站有数千家案例。做网站建设,选成都创新互联

在使用python作图时,应用最广的就是matplotlib包,但我们平时使用matplotlib时主要是画一些简单的图表,很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。

二、图像代码

2.11、函数公式:

y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)

2.12、代码如下:

import numpy as np

import matplotlib.pyplot as plt

def sgn(x):

if x0:

return 1

elif x0:

return -1

else:

return 0

t=np.arange(0,1,0.01)

y=[]

for i in t:

y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)

y.append(y_1)

plt.plot(t,y)

plt.xlabel("t")

plt.ylabel("y")

plt.title("Heavsine")

plt.show()

2.13、运行结果如下:

81036331d721706ae12808beb99b9574.png

2.21、函数公式:

479029.html

2.22、代码如下:

import numpy as np

import matplotlib.pyplot as plt

def g(x):

if x0:

return x

else:

return 0

t=np.arange(0,1,0.01)

y=[]

for i in t:

y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))

y.append(y_1)

plt.plot(t,y)

plt.xlabel("t")

plt.ylabel("y")

plt.title("TimeSine")

plt.show()

python函数图的绘制

pre

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Polygon

def func(x):

return -(x-2)*(x-8)+40

x=np.linspace(0,10)

y=func(x)

fig,ax = plt.subplots()

plt.plot(x,y,'r',linewidth=2)

plt.ylim(ymin=20)

a=2

b=9

ax.set_xticks([a,b])

ax.set_xticklabels(['$a$','$b$'])

ax.set_yticks([])

plt.figtext(0.9,0.05,'$x$')

plt.figtext(0.1,0.9,'$y$')

ix=np.linspace(a,b)

iy=func(ix)

ixy=zip(ix,iy)

verts=[(a,0)]+list(ixy)+[(b,0)]

poly = Polygon(verts,facecolor='0.9',edgecolor='0.5')

ax.add_patch(poly)

x_math=(a+b)*0.5

y_math=35

plt.text(x_math,y_math,r"$\int_a^b(-(x-2)*(x-8)+40)dx$",horizontalalignment='center',size=12)

plt.show()

/pre

python可视化数据分析常用图大集合(收藏)

python数据分析常用图大集合:包含折线图、直方图、垂直条形图、水平条形图、饼图、箱线图、热力图、散点图、蜘蛛图、二元变量分布、面积图、六边形图等12种常用可视化数据分析图,后期还会不断的收集整理,请关注更新!

以下默认所有的操作都先导入了numpy、pandas、matplotlib、seaborn

一、折线图

折线图可以用来表示数据随着时间变化的趋势

Matplotlib

plt.plot(x, y)

plt.show()

Seaborn

df = pd.DataFrame({'x': x, 'y': y})

sns.lineplot(x="x", y="y", data=df)

plt.show()

二、直方图

直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,然后在每个小区间内用矩形条(bars)展示该区间的数值

Matplotlib

Seaborn

三、垂直条形图

条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。

Matplotlib

Seaborn

1plt.show()

四、水平条形图

五、饼图

六、箱线图

箱线图由五个数值点组成:最大值 (max)、最小值 (min)、中位数 (median) 和上下四分位数 (Q3, Q1)。

可以帮我们分析出数据的差异性、离散程度和异常值等。

Matplotlib

Seaborn

七、热力图

力图,英文叫 heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直观地知道某个位置上数值的大小。

通过 seaborn 的 heatmap 函数,我们可以观察到不同年份,不同月份的乘客数量变化情况,其中颜色越浅的代表乘客数量越多

八、散点图

散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。

Matplotlib

Seaborn

九、蜘蛛图

蜘蛛图是一种显示一对多关系的方法,使一个变量相对于另一个变量的显著性是清晰可见

十、二元变量分布

二元变量分布可以看两个变量之间的关系

十一、面积图

面积图又称区域图,强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。

堆积面积图还可以显示部分与整体的关系。折线图和面积图都可以用来帮助我们对趋势进行分析,当数据集有合计关系或者你想要展示局部与整体关系的时候,使用面积图为更好的选择。

十二、六边形图

六边形图将空间中的点聚合成六边形,然后根据六边形内部的值为这些六边形上色。

原文至:

怎么利用python绘制sse值与k值的函数图像

可以使用Python计算机图形学库matplotlib来绘制SSE值与K值的函数图像,具体步骤如下:

1. 导入必要的库,例如matplotlib,numpy,scipy等。

2. 使用numpy和scipy生成k值与SSE值之间的矩阵,并将其存储到列表中。

3. 使用matplotlib绘制输入矩阵中包含的散点图,即k值与SSE值的函数图像。


网页题目:函数关系图Python 函数关系图像一定要直线吗
文章位置:http://jkwzsj.com/article/doieeoo.html

其他资讯