压缩存储值存储极少数的有效数据。使用{row,col,value}三元组存储每一个有效数据,三元组按原矩阵中的位置,以行优先级先后顺序依次存放。
#define _CRT_SECURE_NO_WARNINGS 1
#include
#include
using namespace std;
//三元组的定义
template
struct Triple
{
T _value;
size_t _row;
size_t _col;
Triple(const T& value = T(),
size_t row = 0, size_t col = 0)
:_value(value)
, _row(row)
, _col(col)
{}
};
template
class SparseMatrix
{
public:
//无参构造函数
SparseMatrix()
:_colSize(0)
, _rowSize(0)
{}
//矩阵的压缩
SparseMatrix(T* a, size_t m, size_t n, const T& invalid)
:_rowSize(m)
, _colSize(n)
, _invalid(invalid)
{
for (size_t i = 0; i < m; ++i)//行遍历
{
for (size_t j = 0; j < n; ++j)//列遍历
{
if (a[i*n + j] != invalid)
{
_a.push_back(Triple(a[i*n + j], i, j));
}
}
}
}
void Display()//打印
{
size_t index = 0;
for (size_t i = 0; i < _rowSize; ++i)
{
for (size_t j = 0; j < _colSize; ++j)
{
if (index < _a.size()
&& _a[index]._row == i
&& _a[index]._col == j)
{
cout << _a[index]._value << " ";
++index;
}
else
{
cout << _invalid << " ";
}
}
cout << endl;
}
cout << endl;
}
SparseMatrix Transport()//列转置
{
SparseMatrix tmp;
tmp._colSize = _rowSize;
tmp._rowSize = _colSize;
tmp._invalid = _invalid;
for (size_t i = 0; i < _colSize; ++i)
{
size_t index = 0;
while (index < _a.size())
{
if (_a[index]._col == i)
{
Triple t;
t._value = _a[index]._value;
t._row = _a[index]._col;
t._col = _a[index]._row;
tmp._a.push_back(t);
}
++index;
}
}
return tmp;
}
SparseMatrix FastTransport()//快速转置
{
SparseMatrix tmp;
tmp._colSize = _rowSize;
tmp._rowSize = _colSize;
tmp._invalid = _invalid;
int* rowCounts = new int[_colSize];
int* rowStart = new int[_colSize];
memset(rowCounts, 0, sizeof(int)*_colSize);
memset(rowStart, 0, sizeof(int)*_colSize);
size_t index = 0;
while (index < _a.size())
{
rowCounts[_a[index]._col]++;
++index;
}
rowStart[0] = 0;
for (size_t i = 1; i < _colSize; ++i)
{
rowStart[i] = rowStart[i - 1] + rowCounts[i - 1];
}
index = 0;
tmp._a.resize(_a.size());
while (index < _a.size())
{
size_t rowIndex = _a[index]._col;
int& start = rowStart[rowIndex];
Triple t;
t._value = _a[index]._value;
t._row = _a[index]._col;
t._col = _a[index]._row;
tmp._a[start++] = t;
++index;
}
return tmp;
}
protected:
vector> _a;//三元组类型的顺序表
size_t _rowSize;//行
size_t _colSize;//列
T _invalid;//非法值
};
void TestSparseMatrix()
{
int a[6][5] =
{ { 1, 0, 3, 0, 5 },
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 },
{ 2, 0, 4, 0, 6 },
{ 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0 } };
SparseMatrix sm1((int*)a, 6, 5, 0);
sm1.Display();
SparseMatrix sm2 = sm1.Transport();
sm2.Display();
SparseMatrix sm3 = sm1.FastTransport();
sm3.Display();
}
int main()
{
TestSparseMatrix();
getchar();
return 0;
}
当前题目:稀疏矩阵的压缩存储
本文路径:
http://jkwzsj.com/article/pjhoho.html